$$
\begin{gathered}
\mathcal{T E X N} \operatorname{KODIGIT\mathcal {A}L}(\mathcal{A}) \\
(\mathcal{T} I 2104)
\end{gathered}
$$

Overview

- Ripple Counter
- Syncfronous Binary Counters
- Design with \mathcal{D} Flip- $\mathcal{F l o p s}$
- Design with g-KFfip-Flops
- Serial Vs. Paralle [Counters
- Ulp-down Binary Counter
- Binary Counter with Paralle L Load
- BCD Counter, Arbitrary sequence
- Counters in $\mathfrak{V H} \mathcal{H} L$

Counters

- A counter is a register that goes through a predetermined sequence of states upon the application of clock pulses.
- Counters are categorized as:
- Ripple Counters:

The $\mathcal{F F}$ output transition serves as a sour te for triggering other $\mathcal{F F}$ s. No common choc

- Synchronous Counter:

All $\mathcal{F F}$ s receive the common clock $p u$. change of state is determined from state.

Example: A 4-bit Upward Counting Ripple Counter

Less Significant
Bit output is Clock
for $\mathcal{N e x t S i g n i f i c a n t ~ B i t ! ~}$ (Clock is active low)

Recall...
(a) JK Flip-Flop

\mathbf{J}	\mathbf{K}	$\boldsymbol{Q}(\boldsymbol{t} \mathbf{1}$	$\mathbf{1})$
0	0	$Q(t)$	Operation
0	1	0	No change
1	0	1	Reset
1	1	$\bar{Q}(t)$	Complement

Example (cont.)

- The output of each $\mathcal{F F}$ is connected to the \mathcal{C} input of the next $\mathcal{F F}$ in sequence.
- The $\mathcal{F F}$ folding the le ast significant, bit receives the incoming clock pulses.
- The \mathcal{I} and Kinputs of all $\mathcal{F F}$ s are colnected to a permanent logic 1.
- The bubble next to the C labe linfictele s, that the $\mathcal{F F}$ s respond to the ne gat dgoing transition of the input.

Example (cont.)

Operation:

- The least significant 6it $\left(Q_{0}\right)$ is complemented with each negative-edge clock pulse input.
- Every time that Q_{0} goes from 1 to $0, Q_{1}$ is complemented.
- Every time that Q_{1} goes from 1 to $0, Q_{2}$ is complemented.
- Every time that Q_{2} goes from 1 to $0, Q_{3}$ is complemented, and so on.

Upward Counting Sequence					
\mathbf{Q}_{3}	\mathbf{Q}_{2}	\mathbf{Q}_{1}	\mathbf{Q}_{0}		
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

A 4- Git Downward Counting Ripple Counter

- Use direct Set (S) signals instead of direct Reset (R), in order to start at 1111.
- Alternative designs:
- Change edge-triggering to positive (retails in class)
- Connect the complement out pu form to the C output of the next $\mathcal{F} \mathcal{F}$ sequence...(fome work!)

Using D Flip-Flops

Replace each g Kflip-flop
(a) JK Flip-Flop
with the above \mathcal{D} flip-flop and its corresponding combinational logic.

$Q(t)$	No change	
0	Reset	
1	Set	
$\bar{Q}(t)$	Complement	

Syncfironous Binary Counters

- The design procedure for a binary counter is the same as any other synchronous sequential circuit.
- The primary inputs of the circuit are the CLK and any control signals (EN, Load, e tc).
- The primary outputs are the $\mathcal{F F}$ outpuls (present state).
- Most efficient implementations $\mathcal{F F} s$ or $\mathcal{I} \mathcal{K} \mathcal{F F} \mathcal{F}$. We will examine flop designs.

Syncfronous Binary Counters:

I-KFfip Flop De sign of a 4-6it Binary Ilp Counter

Present state				Next state				Flip-flop inputs						$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \end{aligned}$	1 X X	X 1 1 0
\mathbf{Q}_{3}	\mathbf{Q}_{2}	\mathbf{Q}_{1}	\mathbf{Q}_{0}	\mathbf{Q}_{3}	\mathbf{Q}_{2}	\mathbf{Q}_{1}	\mathbf{Q}_{0}	$J_{\text {Q3 }}$	$\mathbf{K}_{\text {Q3 }}$	$\mathrm{J}_{\text {Q2 }}$	$\mathbf{K}_{\text {Q2 }}$	$J_{\text {Q1 }}$	$\mathbf{K}_{\text {Q1 }}$	$\mathbf{J}_{\text {Q }}$	$\mathbf{K}_{\text {Q0 }}$		
0	0	0	0	0	0	0	1	0	\times	0	x	0	\times	1	\times		
0	0	0	1	0	0	1	0	0	\times	0	\times	1	\times	\times	1		
0	0	1	0	0	0	1	1	0	x	0	\times	\times	0	1	X		
0	0	1	1	0	1	0	0	0	\times	1	\mathbf{x}	\mathbf{x}	1	\times	1		
0	1	0	0	0	1	0	1	0	\times	\times	0	0	\times	1	\times		
0	1	0	1	0	1	1	0	0	x	x	0	1	\times	\times	1		
0	1	1	0	0	1	1	1	0	x	x	0	\times	0	1	\times		
0	1	1	1	1	0	0	0	1	\times	\times	1	\times	1	\times	1		
1	0	0	0	1	0	0	1	\times	0	0	X	0	\times	1	\times		
1	0	0	1	1	0	1	0	\times	0	0	\times	1	\times	\times	1		
1	0	1	0	1	0	1	1	x	0	0	x	x	0	1	X		
1	0	1	1	1	1	0	0	\times	0	1	\times	\times	1	\times	1		
1	1	0	0	1	1	0	1	\times	0	\times	0	0	\times	1	\times		
1	1	0	1	1	1	1	0	\times	0	x	0	1	\times	\times	1		
1	1	1	0	1	1	1	1	\times	0	\times	0	\times	0	1	\times		
1	1	1	1	0	0	0	0	\times	1	\times	1	\times	1	\times	1		

Syncfironous Binary Counters:
g-KFip Flop Design of a Binary Ulp Counter (cont.)

Syncfironous Binary Counters:
g-KFip $\mathfrak{F l o p}$ Design of a Binary $\mathcal{U l}$ Counter (cont.)

	Present state			Next state				Flip-flo									
Q_{3}	Q_{2}	Q_{1}	Q_{0}	Q_{3}	Q_{2}	Q_{1}	Q_{0}	$\mathrm{J}_{\text {Q2 }}$	$\mathrm{K}_{\text {Q2 }}$								
0	0	0	0	0	0	0	1	0	x								
0	0	0	1	0	0	1	0	0	\times			1		X	X	X	X
0	0	1	0	0	0	1	1	0	x								
0	0	1	1	0	1	0	0	1	X	X	X	X	X			1	
0	1	0	0	0	1	0	1	x	0								
0	1	0	1	0	1	1	0	x	0	X	X	X	X			1	
0	1	1	0	0	1	1	1	x	0								
0	1	1	1	1	0	0	0	\times	1			1		X	X	X	X
1	0	0	0	1	0	0	1	0	x								
1	0	0	1	1	0	1	0	0	x			Q_{0}				Q_{0}	
1	0	1	0	1	0	1	1	0	x					1	1		
1	0	1	1	1	1	0	0	1	x								
1	1	0	0	1	1	0	1	x	0								
1	1	0	1	1	1	1	0	x	0								
1	1	1	0	1	1	1	1	\times	0								
1	1	1	1	0	0	0	0	x	1								
4. Feb 6.09				Chapter 5-ii:Reg						rs							

Synchronous Binary Counters:
g-KFip Flop Design of a Binary Ulp Counter (cont.)

Present state				Next state				p inputs	
\mathbf{Q}_{3}	Q_{2}	Q_{1}	\mathbf{Q}_{0}	Q_{3}	Q_{2}	\mathbf{Q}_{1}	Q_{0}	$J_{\text {Q1 }}$	$\mathrm{K}_{\text {Q1 }}$
0	0	0	0	0	0	0	1	0	x
0	0	0	1	0	0	1	0	1	x
0	0	1	0	0	0	1	1	x	0
0	0	1	1	0	1	0	0	x	1
0	1	0	0	0	1	0	1	0	x
0	1	0	1	0	1	1	0	1	X
0	1	1	0	0	1	1	1	x	0
0	1	1	1	1	0	0	0	X	1
1	0	0	0	1	0	0	1	0	X
1	0	0	1	1	0	1	0	1	X
1	0	1	0	1	0	1	1	x	0
1	0	1	1	1	1	0	0	x	1
1	1	0	0	1	1	0	1	0	x
1	1	0	1	1	1	1	0	1	X
1	1	1	0	1	1	1	1	x	0
1	1	1	1	0	0	0	0	X	1

$J_{Q 1}=Q_{0}$

x	x	1	
x	x	1	
x	x	1	
x	x	1	

Synchronous Binary Counters:
g-KFip Flop Design of a Binary Ulp Counter (cont.)

Syncfronous Binary Counters:

4-Fe6-09

(a) Logic diagram

$\mathcal{E N}=$ enable control signal, when 0 counter remains in the same state, when 1 it counts
$C O=$ carry output signal, used to extend the counter to mgre stages
(b) Symbol

Synchronous binary counters

 using \mathcal{D} flip-flops- $\mathcal{D}_{Q_{0}}=Q_{0} \otimes \mathcal{E N}$
- $\mathcal{D}_{Q_{1}}=Q_{1} \otimes\left(Q_{0} \cdot E \mathbb{E}\right)$
- $\mathcal{D}_{Q 2}=Q_{2} \otimes\left(Q_{0} Q_{1} \cdot E \mathcal{N}\right)$
- $\mathcal{D}_{Q 3}=Q_{3} \otimes\left(Q_{0} Q_{1} Q_{2} \cdot E \mathcal{E N}\right)$
- $C 0=Q_{0} Q_{1} Q_{2} Q_{3} \cdot E \mathcal{N}$

See Figure 5-11...compare with Figure 5\mathcal{I} K-based design calls for $4 \mathcal{A N D}$ gates \mathcal{D}-based de sign calls for $4 \mathcal{A N D}$ and 4

Serial Vs Parallel Counters

- If serial gating (chain of gates, info ripples through) is used
\rightarrow serial counter (ex. Fig. 5-11a)
- If serialgating is replaced with paralliel gating (this is analogous with ripple-loqic replaced with carry-looke afe ad logic our adder designs)
\rightarrow parallelcounter (ex. Fig. 5-116
- Advantage of parallelover serial faster in certain occasions (1111

Ulp-Down Binary Counter

Up-Down Binary Counter (cont.)

Ulp-Down Binary Counter (cont.)

Fill-in the Karnaugh maps for Q2.D, simplify, and derive the logic diagram (a) $\mathcal{D}-\mathcal{F F}$ s and (b) $\mathcal{T}-\mathcal{F F}$ s

Binary Counter with Parallel L Load

- (Next slide) gives the logic diagram and symbol of a 4- bit synchronous binary counter with parallel load capability. The function table for this binary counter is

$\mathcal{B C D}$ counter

- The binary counter with parallelload can be converted into a synchronous $\mathcal{B C D}$ counter by connecting an external $\mathcal{A} \mathcal{N} \mathcal{D}$ gate to it.

$\mathcal{B C D}$ counter (cont.)

- The counter starts with an all-zero output.
- As long as the output of the $\mathfrak{A N} \mathcal{D} \operatorname{gate}$ is 0 , each positive clock pulse transition increments the counter by one.
- When the output reaches the count of $1001,6 \mathrm{both} Q_{0}$ and Q_{3} become 1, making the output of the Alv gate equal to 1. This condition makes Load active, on the next clock transition, the counter does nh ount but is loaded from its four inputs.
- The value loaded then is 0000 .

Arbitrary Sequence Counter

- Given an arbitrary sequence, design a counter that will generate this sequence.
- Procedure:
- Derive state table/diagram based on give;sequence
- Simplify (using K-maps, etc)
- Drawlogic diagram
- Example: Ulse $\mathcal{D}-\mathcal{F F}$ s to draw the diagram for sequence generator for: $0 \rightarrow 7 \rightarrow 6 \rightarrow 1 \rightarrow 0(000 \rightarrow$ $001 \rightarrow 000$)

