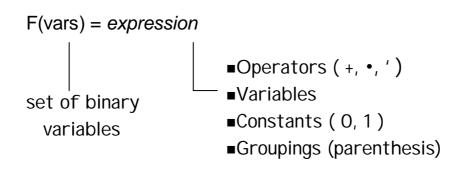
TEKNIK DIGITAL (A) (TI 2104)

Materi Kuliah ke-4

LOGIC GATE


Overview

- Binary logic and Gates
- · Boolean Algebra
 - Basic Properties
 - Algebraic Manipulation
- Standard and Canonical Forms
 - Minterms and Maxterms (Canonical forms)
 - SOP and POS (Standard forms)
- Karnaugh Maps (K-Maps)
 - 2, 3, 4, and 5 variable maps
 - Simplification using K-Maps
- K-Map Manipulation
 - Implicants: Prime, Essential
 - Don't Cares

Binary Logic

- Deals with binary variables that take 2 discrete values (0 and 1), and with logic operations
- Three basic logic operations:
 - AND, OR, NOT
- Binary/logic variables are typically represented as letters: A,B,C,...,X,Y,Z

Binary Logic Function

Example:
$$F(a,b) = a' \cdot b + b'$$

 $G(x,y,z) = x \cdot (y+z')$

Basic Logic Operators

 1-bit logic AND resembles binary multiplication:

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$

 1-bit logic OR resembles binary addition, except for one operation:

$$0 + 0 = 0$$
, $0 + 1 = 1$,
 $1 + 0 = 1$, $1 + 1 = 1$ (? 10_2)

Truth Tables for logic operators

Truth table: tabular form that <u>uniquely</u> represents the relationship between the input variables of a function and its output

2-Input AND

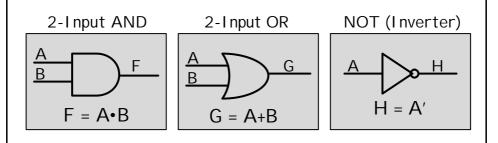
Α	В	F=A•B
0	0	0
0	1	0
1	0	0
1	1	1

2-Input **OR**

Α	В	F=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT

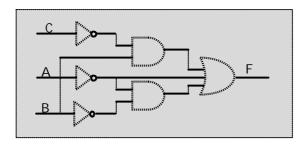
Α	F=A'
0	1
1	0


Truth Tables (cont.)

Q: Let a function F() depend on n
variables. How many rows are there in the
truth table of F()?

A: 2^n rows, since there are 2^n possible binary patterns/combinations for the n variables

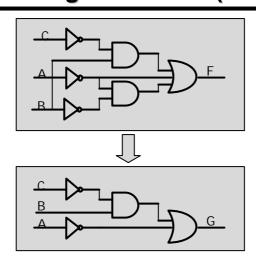
Logic Gates


 Logic gates are abstractions of electronic circuit components that operate on one or more input signals to produce an output signal.

Timing Diagram $t_2 \ t_3 \ t_4 \ t_5 \ t_6$ Input -Transitions signals F=A•B Basic Gate 2 Assumption: Output G=A+BZero time for Signals' signals to -H=A'propagate Through gates

Combinational Logic Circuit from Logic Function

- Consider function F = A' + B•C' + A'•B'
- A combinational logic circuit can be constructed to implement F, by appropriately connecting input signals and logic gates:
 - Circuit input signals → from function variables (A, B, C)
 - Circuit output signal → function output (F)
 - Logic gates → from logic operations



Combinational Logic Circuit from Logic Function (cont.)

- In order to design a cost-effective and efficient circuit, we must minimize the circuit's size (area) and propagation delay (time required for an input signal change to be observed at the output line)
- Observe the truth table of F=A' + B•C' + A'•B' and G=A' + B•C'
- Truth tables for F and G are identical → same function
- Use G to implement the logic circuit (less components)

Α	В	С	F	G
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Combinational Logic Circuit from Logic Function (cont.)

TUGAS 3

CARI DATA SHEET DARI IC CMOS & TTL SERIES DI INTERNET :

74_{LS}00, 74_{LS}02, 74_{LS}04, 74_{LS}08, 74_{LS}10, 74_{LS}11, 74_{LS}20, 74_{LS}21, 74_{LS}27, 74_{LS}30, 74_{LS}32, 74_{LS}86