TEKNIK DIGITAL (A) (TI 2104)

Materi Kuliah ke-5

BOOLEAN ALGEBRA AND LOGIC SIMPLICATION

Boolean Algebra

- VERY nice machinery used to manipulate (simplify) Boolean functions
- George Boole (1815-1864): "An investigation of the laws of thought"
- Terminology:
- Literal: A variable or its complement
- Product term : literals connected by •
- Sum term: literals connected by +

Boolean Algebra Properties

Let X : boolean variable, 0,1 : constants

1. $X+0=X$-- Zero Axiom
2. $X \cdot 1=X$-- Unit Axiom
3. $X+1=1$-- Unit Property
4. $X \cdot 0=0$-- Zero Property

Boolean Algebra Properties (cont.)

Let X : boolean variable, 0,1 : constants
5. $X+X=X$-- Idempotence
6. $X \cdot X=X$-- Idempotence
7. $X+X^{\prime}=1$-- Complement
8. $X \cdot X^{\prime}=0$-- Complement
9. $(X)^{\prime}=X \quad--$ Involution

The Duality Principle

- The dual of an expression is obtained by exchanging (\cdot and +), and (1 and 0) in it, provided that the precedence of operations is not changed.
- Cannot exchange x with x ,
- Example:
- Find $H(x, y, z)$, the dual of $F(x, y, z)=x y z{ }^{\prime}+x y z$
$-H=\left(x^{\prime}+y+z\right)\left(x^{\prime}+y^{\prime}+z\right)$
- Dual does not always equal the original expression
- If a Boolean equation/equality is valid, its dual is also valid

The Duality Principle (cont.)

With respect to duality, Identities $1-8$ have the following relationsfip:

1. $X+0=X \quad$ 2. $X \cdot 1=X \quad(d u a l$ of 1$)$
2. $X+1=1$ 4. $X \cdot 0=0$ (dual of 3)
3. $X+X=X \quad$ 6. $X \cdot X=X \quad$ (dual of ${ }^{5}$)
4. $X+X^{\prime}=1 \quad$ s. $X \cdot X^{\prime}=0 \quad$ (dual of 8)

More Boolean Algebra Properties

Let X, Y, and Z : boolean variables
10. $X+Y=Y+X$
11. $X \cdot Y=Y \cdot X \quad$-- Commutative
12. $X+(Y+Z)=(X+Y)+Z$
13. $X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
-- Associative
14. $X \cdot(Y+Z)=X \cdot Y+X \cdot Z$
15. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$

- Distributive

16. $(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime} \quad$ 17. $(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime} \quad-$ DeMorgan s In general,

$$
\begin{aligned}
& \left(X_{1}+X_{2}+\ldots+X_{n}\right)^{\prime}=X_{1}{ }^{\prime} X_{2}^{\prime} \cdot \ldots \cdot X_{n}^{\prime} \text {, and } \\
& \left(X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n}\right)^{\prime}=X_{1}^{\prime}+X_{2}^{\prime}+\ldots+X_{n}^{\prime}+
\end{aligned}
$$

Absorption Property (Covering)

1. $x+x y=x$
2. $x \cdot(x+y)=x$ (dual)

- Proof:

$$
\begin{aligned}
x+x \cdot y & =x \bullet 1+x \bullet y \\
& =x \bullet(1+y) \\
& =x \bullet 1 \\
& =x
\end{aligned}
$$

QED (2 true by duality)

Consensus Theorem

1. $x y+x z+y z=x y+x z$
2. $(x+y) \cdot\left(x^{\prime}+z\right) \cdot(y+z)=(x+y) \bullet\left(x^{\prime}+z\right) \quad--(d u a l)$

- Proof:

$$
\begin{aligned}
x y+x z+y z & =x y+x z+(x+x) y z \\
& =x y+x z+x y z+x y z \\
& =(x y+x y z)+(x z+x z y) \\
& =x y+x z
\end{aligned}
$$

QED (2 true by duality).

Truth Tables (revisited)

- Enumerates all possible combinations of variable values and the corresponding function value
- Truth tables for some arbitrary functions
$F_{1}(x, y, z), F_{2}(x, y, z)$, and
$F_{3}(x, y, z)$ are shown to the right.

x	y	z	F_{1}	F_{2}	F_{3}
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	1	0	1

Truth Tables (cont.)

- Truth table: a unique representation of a Boolean function
- If two functions have identical truth tables, the functions are equivalent (and vice-versa).
- Truth tables can be used to prove equality theorems.
- However, the size of a truth table grows exponentially with the number of variables involved, hence unwieldy. This motivates the use of Boolean Algebra.

Boolean expressions-NOT unique

- Unlike truth tables, expressions representing a Boolean function are NOT unique.
- Example:
- $F(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y \cdot \sigma^{\prime}+x \cdot y \cdot z^{\prime}$
$-G(x, y, z)=x^{\prime} \cdot y^{\prime} \cdot z^{\prime}+y \cdot z^{\prime}$
- The corresponding truth tables for $F()$ and $G()$ are to the right. They are identical!
- Thus, F()$=\mathrm{G}()$

x	y	z	F	G
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Algebraic Manipulation

- Boolean algebra is a useful tool for simplifying digital circuits.
- Why do it? Simpler can mean cheaper, smaller, faster.
- Example: Simplify $F=x y z+x y z{ }^{\prime}+x z$.
$F=x y z+x y z{ }^{\prime}+x z$
$=x y(z+z)+x z$
$=x y \cdot 1+x z$
$=x y+x z$

Algebraic Manipulation (cont.)

- Example: Prove

$$
x y z^{\prime}+x y z^{\prime}+x y z^{\prime}=x z^{\prime}+y z^{\prime}
$$

- Proof:
$x y z+x y z+x y z{ }^{\prime}$

$$
\begin{aligned}
& =x y z^{\prime}+x y z^{\prime}+x y z^{\prime}+x y z^{\prime} \\
& =x z^{\prime}\left(y^{\prime}+y\right)+y z\left(x^{\prime}+x\right) \\
& =x z^{\prime} \cdot 1+y z^{\prime} \cdot 1 \\
& =x z^{\prime}+y z^{\prime}
\end{aligned}
$$

QED.

Complement of a Function

- The complement of a function is derived by interchanging (\cdot and +), and (1 and 0), and complementing each variable.
- Otherwise, interchange 1 s to 0 s in the truth table column showing F .
- The complement of a function IS NOT THE SAME as the dual of a function.

Complementation: Example

- Find $G(x, y, z)$, the complement of
$F(x, y, z)=x y z^{\prime}+x y z$
- $G=F^{\prime}=\left(x y z z^{\prime}+x y z\right)^{\prime}$

$$
\begin{array}{ll}
=(x y z)^{\prime} \bullet(x y z)^{\prime} & \text { DeMorgan } \\
=\left(x^{\prime}+y+z\right) \cdot(x+y+z) & \text { DeMorgan again }
\end{array}
$$

- Note: The complement of a function can also be derived by finding the functions dual, and then complementing all of the literals

Canonical and Standard Forms

- We need to consider formal techniques for the simplification of Boolean functions.
- Minterms and Maxterms
- Sum-of-Minterms and Product-of-Maxterms
- Product and Sum terms
- Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

- Literal: A variable or its complement
- Product term: literals connected by •
- Sum term: literals connected by +
- Minterm: a product term in which all the variables appear exactly once, either complemented or uncomplemented
- Maxterm : a sum term in which all the variables appear exactly once, either complemented or uncomplemented

Minterm

- Represents exactly one combination in the truth table.
- Denoted by m_{j}, where j is the decimal equivalent of the minterm s corresponding binary combination (bj).
- A variable in $m j$ is complemented if its value in $b j$ is 0 , otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and $j=3$. Then, $\mathrm{b}_{j}=011$ and its corresponding minterm is denoted by $m_{j}=\mathrm{ABC}$

Maxterm

- Represents exactly one combination in the truth table.
- Denoted by $M j$, where j is the decimal equivalent of the maxterm s corresponding binary combination (bj).
- A variable in $M j$ is complemented if its value in b_{j} is 1 , otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and $j=3$. Then, $\mathrm{b}_{j}=011$ and its corresponding maxterm is denoted by $\mathrm{M}_{j}=\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}$

Truth Table notation for Minterms and Maxterms

- Minterms and Maxterms are easy to denote using a truth table.
- Example:

Assume 3
variables x, y, z (order is fixed)

x	y	z	Minterm	Maxterm
0	0	0	$x^{\prime} y^{\prime} z^{\prime}=m_{0}$	$x+y+z=M_{0}$
0	0	1	$x^{\prime} y^{\prime} z=m_{1}$	$x+y+z^{\prime}=M_{1}$
0	1	0	$x^{\prime} y z^{\prime}=m_{2}$	$x+y^{\prime}+z=M_{2}$
0	1	1	$x^{\prime} y z=m_{3}$	$x+y^{\prime}+z^{\prime}=M_{3}$
1	0	0	$x y^{\prime} z^{\prime}=m_{4}$	$x^{\prime}+y+z=M_{4}$
1	0	1	$x y^{\prime} z=m_{5}$	$x^{\prime}+y+z^{\prime}=M_{5}$
1	1	0	$x y z^{\prime}=m_{6}$	$x^{\prime}+y^{\prime}+z=M_{6}$
1	1	1	$x y z=m_{7}$	$x^{\prime}+y^{\prime}+z^{\prime}=M_{7}$

Canonical Forms (Unique)

- Any Boolean function F() can be expressed as a unique sum of minterms and a unique product of maxterms (under a fixed variable ordering).
- In other words, every function $F()$ has two canonical forms:
- Canonical Sum-Of-Products (sum of minterms)
- Canonical Product-Of-Sums (product of maxterms)

Canonical Forms (cont.)

- Canonical Sum-Of-Products:

The minterms included are those m_{j} such that $F()=1$ in row j of the truth table for $F($).

- Canonical Product-Of-Sums:

The maxterms included are those M_{j} such that $F()=0$ in row j of the truth table for $F($).

Example

- Truth table for $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ at right
- The canonical sum-of-products form for f_{1} is

$$
\begin{aligned}
f_{1}^{\prime}(a, b, c) & =m_{1}+m_{2}+m_{4}+m_{6} \\
& =a b c+a b c^{\prime}+a b c^{\prime}+a b c
\end{aligned}
$$

- The canonical product-of-sums form for f_{1} is

$$
\begin{aligned}
f_{1}(a, b, c)= & M_{0} \cdot M_{3} \cdot M_{5} \cdot M_{7} \\
= & (a+b+c) \cdot(a+b+c) \cdot \\
& (a+b+c) \cdot(a+b+c) .
\end{aligned}
$$

- Observe that: $\mathrm{m}_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}}{ }^{\prime}$

a	b	c	f_{1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Shorthand: ? and ?

- $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c})=$? $\mathrm{m}(1,2,4,6)$, where ? indicates that this is a sum-of-products form, and $m(1,2,4,6)$ indicates that the minterms to be included are $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{4}$, and m_{6}.
- $f_{1}(a, b, c)=$? $M(0,3,5,7)$, where ? indicates that this is a product-of-sums form, and $\mathrm{M}(0,3,5,7)$ indicates that the maxterms to be included are M_{0}, M_{3}, M_{5}, and M_{7}.
- Since $\mathrm{m}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i}}$ ' for any j,
? $m(1,2,4,6)=? \quad M(0,3,5,7)=f_{1}(a, b, c)$

Conversion Between Canonical Forms

- Replace ? with? (or vice versa) and replace those $j s$ that appeared in the original form with those that do not.
- Example:

$$
\begin{aligned}
f_{1}(a, b, c) & =a b c+a b c^{\prime}+a b c^{\prime}+a b c^{\prime} \\
& =m_{1}+m_{2}+m_{4}+m_{6} \\
& =?(1,2,4,6) \\
& =?(0,3,5,7) \\
& =(a+b+c) \cdot\left(a+b^{\prime}+c\right) \cdot\left(a^{\prime}+b+c\right)^{\prime} \cdot\left(a^{\prime}+b^{\prime}+c^{\prime}\right)
\end{aligned}
$$

Standard Forms (NOT Unique)

- Standard forms are "like" canonical forms, except that not all variables need appear in the individual product (SOP) or sum (POS) terms.
- Example:
$f_{1}(a, b, c)=a b c+b c^{\prime}+a c^{\prime}$
is a standard sum-of-products form
- $f_{1}(a, b, c)=(a+b+c) \cdot(b+c) \cdot(a+c)$
is a standard product-of-sums form.

Conversion of SOP from standard to canonical form

- Expand non-canonical terms by inserting equivalent of 1 in each missing variable x :

$$
(x+x)=1
$$

- Remove duplicate minterms
- $f_{1}(a, b, c)=a b c+b c^{\prime}+a c^{\prime}$

$$
\begin{aligned}
& =a b c+(a+a) b c^{\prime}+a(b+b) c^{\prime} \\
& =a b c+a b c^{\prime}+a b c^{\prime}+a b c^{\prime}+a b c^{\prime} \\
& =a b c+a b c^{\prime}+a b c+a b c^{\prime}
\end{aligned}
$$

Conversion of POS from standard to canonical form

- Expand noncanonical terms by adding 0 in terms of missing variables (e.g., $\mathrm{xx}^{\prime}=0$) and using the distributive law
- Remove duplicate maxterms

$$
\text { - } \begin{aligned}
f_{1}(a, b, c)= & (a+b+c) \cdot(b+c) \cdot(a+c) \\
= & (a+b+c) \cdot(a a+b+c) \cdot(a+b b+c) \\
= & (a+b+c) \cdot(a+b+c) \cdot(a+b+c) \cdot \\
& (a+b+c) \cdot(a+b+c) \\
= & (a+b+c) \cdot(a+b+c) \cdot(a+b+c) \cdot(a+b+c)
\end{aligned}
$$

TUGAS - 4

Sederhanakan fungsi boole berikut
a. $((A+B+C) D)$
b. $(A B C+D E F)$ '
c. $\left(A B^{\prime}+C^{\prime} D+E F\right)^{\prime}$
d. $\left((A+B)^{\prime}+C^{\prime}\right)^{\prime}$
e. $\left(\left(A^{\prime}+B\right)+C D\right)^{\prime}$
f. $\left((A+B) C^{\prime} D^{\prime}+E+F^{\prime}\right)^{\prime}$
g. $A B+A(B+C)+B(B+C)$
h. $\left[A B^{\prime}(C+B D)+A^{\prime} B^{\prime}\right] C$
i. $A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C$
j. $(A B+A C)^{\prime}+A^{\prime} B^{\prime} C$

