TEKNIK DIGITAL (A) (TI 2104)

Materi Kuliah ke-6

LOGIC SIMPLICATION

Karnaugh Maps

- Karnaugh maps (K-maps) are graphical representations of boolean functions.
- One map cell corresponds to a row in the truth table.
- Also, one map cell corresponds to a minterm or a maxterm in the boolean expression
- Multiple-cell areas of the map correspond to standard terms .

Two-Variable Map

$O R$	$\mathrm{x}_{2}{ }^{x_{1}}$		0	1	
	0	0		2	
			m_{0}		m_{2}
		1		3	
	1		m_{1}		m_{3}

$\mathfrak{N O T E}$: ordering of variables is ISMPO RIANNT
for $f\left(x_{1}, x_{2}\right), x_{1}$ is the row, x_{2} is the column.
Cell 0 represents $x_{1} \chi_{2} ;$ Cell 1 represents $x_{1} \chi_{2}$; etc. If a minterm is present in the
function, then a 1 is placed in the corresponding cell.

Two-Variable Map (cont.)

- Any two adjacent cells in the map differ by ONLY one variable, which appears complemented in one cell and uncomplemented in the other.

- Example:

$\mathrm{m}_{0}\left(=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2}{ }^{\prime}\right)$ is adjacent to $\mathrm{m}_{1}\left(=\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2}\right)$ and $m_{2}\left(=x_{1} x_{2}{ }^{\prime}\right)$ but NOT $m_{3}\left(=x_{1} x_{2}\right)$

2-Variable Map -- Example

- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}{ }^{\prime}+x_{1} x_{2}+x_{1} x_{2}^{\prime}$

$$
\begin{aligned}
& =m_{0}+m_{1}+m_{2} \\
& =x_{1}^{\prime}+x_{2}
\end{aligned}
$$

- 1s placed in K-map for specified minterms $\mathrm{m}_{0}, \mathrm{~m}_{1}, \mathrm{~m}_{2}$
- Grouping (ORing) of 1 s allows simplification
- What (simpler) function is represented by each dashed rectangle?
$-a_{1}{ }^{\prime}=m_{0}+m_{1}$
$-\mathrm{a}_{2}{ }^{\prime}=\mathrm{m}_{0}+\mathrm{m}_{2}$

- Note m_{0} covered twice

Minimization as SOP using K-map

- Enter 1s in the K-map for each product term in the function
- Group adjacent K-map cells containing 1s to obtain a product with fewer variables. Groups must be in power of $2(2,4,8, .$.
- Handle "boundary wrap" for K-maps of 3 or more variables.
- Realize that answer may not be unique

Three-Variable Map

- Note: variable ordering is (x, y, z); yz specifies column, x specifies row.
- Each cell is adjacent to three other cells (left or right or top or bottom or edge wrap)

Three-Variable Map (cont.)

The types of structures that are either minterms or are generated by repeated application of the
minimization the orem on a three variable map are shown at right. Groups of 1,2,4, 8 are possible.
group of 2 terms

Simplification

- Enter minterms of the Boolean function into the map, then group terms
- Example: $f(a, b, c)=a c{ }^{\prime}+a b c+b c^{\prime}$
- Result: $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{ac}+\mathrm{b}$

More Examples

- $f_{1}(x, y, z)=? m(2,3,5,7)$
- $f_{1}(x, y, z)=x y+x z$

- $f_{2}(x, y, z)=$? $m(0,1,2,3,6)$
- $f_{2}(x, y, z)=x^{\prime}+y z^{\prime}$

Four-Variable Maps

- Top cells are adjacent to bottom cells. Left-edge cells are adjacent to right-edge cells.
- Note variable ordering (WXYZ).

Four-variable Map Simplification

- One square represents a minterm of 4 literals.
- A rectangle of 2 adjacent squares represents a product term of 3 literals.
- A rectangle of 4 squares represents a product term of 2 literals.
- A rectangle of 8 squares represents a product term of 1 literal.
- A rectangle of 16 squares produces a function that is equal to logic 1.

Example

- Simplify the following Boolean function $(A, B, C, D)=? m(0,1,2,4,5,7,8,9,10,12,13)$.
- First put the function $g()$ into the map, and then group as many 1 s as possible.

$a b \backslash \begin{gathered} c d \\ 00 \end{gathered}$		01	11	10
00	1	1		1
01	1	1	1	
11	1	1		
10	1	1		1

5-Variable K-Map

Implicants and Prime Implicants (PIs)

- An Implicant (P) of a function F is a product term which implies F, i.e., $F(P)=1$.
- An implicant (PI) of F is called a Prime Implicant of F if any product term obtained by deleting a literal of PI is NOT an implicant of F
- Thus, a prime implicant is not contained in any "larger" implicant.

Example

- Consider function $f(a, b, c, d)$ whose Kmap is shown at right.
- $a b$ 'is not a prime implicant because it is contained in b :
- acd is not a prime implicant because it is contained in ad.
- b', ad, and a cd 'are prime implicants.

Essential Prime Implicants (EPIs)

- If a minterm of a function F is included in ONLY one prime implicant p, then p is an essential prime implicant of F.
- An essential prime implicant MUST appear in all possible SOP expressions of a function
- To find essential prime implicants:
- Generate all prime implicants of a function
- Select those prime implicants that contain at least one 1 that is not covered by any other prime implicant.
- For the previous example, the PIs are b', ad,
 and a cd ; all of these are essential.

Another Example

- Consider $\mathrm{f}_{2}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$, whose K-map is shown below.
- The only essential Pl is bd.

Systematic Procedure for Simplifying Boolean Functions

1. Generate all Pls of the function.
2. Include all essential Pls.
3. For remaining minterms not included in the essential Pls, select a set of other Pls to cover them, with minimal overlap in the set.
4. The resulting simplified function is the logical OR of the product terms selected above.

Example

- $f(a, b, c, d)=$
? m(0,1,2,3,4,5,7,14,15).
- Five grouped terms, not all needed.
- 3 shaded cells covered by only one term

- 3 EPIs, since each shaded cell is covered by a different term.
- $F(a, b, c, d)=a b^{\prime}+a c^{\prime}+a d+a b c$

Product of Sums Simplification

- Use sum-of-products simplification on the zeros of the function in the K-map to get F:
- Find the complement of F, i.e. (F)' $=F$
- Recall that the complement of a boolean function can be obtained by (1) taking the dual and (2) complementing each literal.
- OR, using DeMorgan s Theorem.

POS Example

$a b c d$

1	1	1	1
1	1	1	0
0	0	1	1
0	0	0	0
	-		

- $\mathcal{F}(a, b, c, d)=a b^{\prime}+a c^{\prime}+a^{\prime} \mathfrak{b} c d^{\prime}$
- Find dual of $\mathcal{F} ;$ dual($(\mathcal{F})=\left(a+b^{\prime}\right)\left(a+c{ }^{\prime}\right)\left(a^{\prime}+6+c+d^{\prime}\right)$
- Complement of literals in dual($\mathcal{F})$ to get \mathcal{F}
$\mathcal{F}=\left(a^{\prime}+b\right)\left(a^{\prime}+c\right)\left(a+b^{\prime}+c^{\prime}+d\right)$
(verify that this is the same as in slide 60)

Don't Care Conditions

- There may be a combination of input values which
- will never occur
- if they do occur, the output is of no concern.
- The function value for such combinations is called a don't care.
- They are usually denoted with \mathbf{x}. Each \mathbf{x} may be arbitrarily assigned the value 0 or 1 in an implementation.
- Dont cares can be used to further simplify a function

Minimization using Don t Cares

- Treat don't cares as if they are 1 s to generate Pls.
- Delete Pl's that cover only don't care minterms.
- Treat the covering of remaining don't care minterms as optional in the selection process (i.e. they may be, but need not be, covered).

Example

- Simplify the function $f(a, b, c, d)$ whose K-map is shown at the right.

- $f=a c d+a b{ }^{\prime}+c d^{\prime}+a b c$ ' or
- $f=a c d+a b+c d^{\prime}+a b d$ '
- The middle two terms are EPIs, while the first and last terms are selected to
 cover the minterms m_{1}, m_{4}, and m_{5}.
- (There s a third solution!)

0	1 1	0	, 1
-1	11	0	${ }^{5}$
0	0	x	'x
1	-1-	-	L x

Another Example

- Simplify the function g(a,b,c,d) whose K-map

$a b$| $c d$ | | | |
| :---: | :---: | :---: | :---: |
| x | 1 | 0 | 0 |
| 1 | x | 0 | x |
| 1 | x | x | 1 |
| 0 | x | x | 0 | is shown at right.

- $g=a c^{\prime}+a b$
or
- $g=a c+b d$

- ${ }^{1}$	11	0	0
11	x	0	x
11	x	x	- 1
0	X	X	0
Ix-	1	0	0
,	x	0	F-
$1!$	x	X	'1
0	x	x	0

Algorithmic minimization

- What do we do for functions with more than 4-5 variables?
- You can "code up" a minimiser
(Computer-Aided Design, CAD)
- Quine-McCluskey algorithm
- Iterated consensus
- We wont discuss these techniques here

QUIST

Sederhanakan fungsi Boole berikut ini :

- $F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+B C^{\prime} D^{\prime}+A C^{\prime} D^{\prime}$
- $F=A+A^{\prime} B C D+A^{\prime} B C+A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C$
- $\quad G=W X^{\prime} Y Z^{\prime}+W X Y^{\prime}+W X Y Z+X^{\prime} Y^{\prime} Z$
- $H=X^{\prime} Y Z^{\prime}+X^{\prime} Y^{\prime} Z+X Y Z$

