TEKNIK DIGITAL (A) (TI 2104)

Materi Kuliah ke-9

FLIP-FLOPS Continue

Direct inputs

- One last thing to worry about... what is the starting value of Q?
- We could set the initial value synchronously, at the next positive clock edge, but this actually makes circuit design more difficult.
- Instead, most flip-flops provide direct, or asynchronous, inputs that let you immediately set or clear the state.
 - You would "reset" the circuit once, to initialize the flip-flops.
 - The circuit would then begin its regular, synchronous operation.
- Here is a LogicWorks D flip-flop with active-low direct inputs.

Flip-flop varia	ations	
 We can make different versions of flip-flops based on the D flip-flop, just like we made different latches based on the S'R' latch. A JK flip-flop has inputs that act like S and R, but the inputs JK=11 are used to <i>complement</i> the flip-flop's current state. 		
$ \begin{array}{c} $	KQnextxNo change0No change10 (reset)01 (set)1Q'current	
• A T flip-flop can only maintain or comple	ment its current state.	
$ \begin{array}{c} T & Q \\ \hline \\ C & Q \\ \hline \\ \end{array} $	Q _{next} No change No change Q' _{current}	
Flip-flops	20	

Characteristic tables

- The tables that we've made so far are called characteristic tables.
 - They show the next state Q(t+1) in terms of the current state Q(t) and the inputs.
 - For simplicity, the control input C is not usually listed.
 - Again, these tables don't indicate the positive edge-triggered behavior of the flip-flops that we'll be using.

D	Q(t+1)	Operation
0	0	Reset
1	1	Set

J	K	Q(t+1)	Operation
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Т	Q(t+1)	Operation
0	Q(t)	No change
1	Q'(t)	Complement

Flip-flops

21

	Characte	eristic equations	
 We can also write characteristic equations, where the next state Q(t+1) is defined in terms of the current state Q(t) and inputs. 			1)
D Q(t+1) 0 0 1 1	Operation Reset Set	Q(t+1) = D	
J K Q(t+1) 0 0 Q(t) 0 1 0 1 0 1 1 1 Q'(t)	Operation No change Reset Set Complement	Q(t+1) = K'Q(t) + JQ'(t)	
T Q(t+1) 0 Q(t) 1 Q'(t)	Operation No change Complement	Q(t+1) = T'Q(t) + TQ'(t) = T \oplus Q(t)	
		Flip-flops 2	22

Summary
 To use memory in a larger circuit, we need to: Keep the latches disabled until new values are ready to be stored. Enable the latches just long enough for the update to occur. A clock signal is used to synchronize circuits. The cycle time reflects how long combinational operations take. Flip-flops further restrict the memory writing interval, to just the positive edge of the clock signal. This ensures that memory is updated only once per clock cycle. There are several different kinds of flip-flops, but they all serve the same basic purpose of storing bits. Next week we'll talk about how to analyze and design sequential circuits that use flip-flops as memory.
Flip-flops 26