$\mathcal{T E K N I \mathcal { K }} \mathcal{D} \operatorname{GIT} \mathcal{A L}(\mathcal{A})$
 (TI 2104)

Materi Kuliah ke-9

FLIP-FLOPS Continue

Ffip- Flops

- Last time, we saw fowlatches can be used as memory in a circuit.
- Latches introduce new problems:
- We need to know when to enable a latch.
- We also need to quickly disable a latch.
- In other words, it's difficult to control the timing of latches in a large circuit.
- We solve these problems with two newelements: clocks and flip-flops
- Clocks tell us when to write to our memory.
- Flip-flops allow us to quickly write the memory at clearly defined times.
- Ulsed together, we can create circuits without worrying about the memory timing.

An SR latch with a control input

- Here is an \mathcal{S} Rlatch with a controlinput \mathcal{C}.

- Notice the fierarchical design!
- The dotted blue box is the S R'latch.
- The additional $\mathcal{N} \mathcal{A N} \mathcal{D}$ gates are simply used to generate the correct inputs for the \mathcal{S} R'latch.
- The controlinput acts just like an enable.

\mathcal{D} latch

- Finally, a \mathcal{D} latch is based on an S R'latch. The additional gates generate the S 'and \mathcal{R} 'signals, based on inputs \mathcal{D} ("data") and C ("control").
- When $\mathcal{C}=0, S^{\prime}$ and \mathcal{R}^{\prime} are both 1 , so the state Q does not change.
- When $C=1$, the latch output Q will equal the input \mathcal{D}.
- No more messing with one input for set and another input for reset!

- Also, this latch has no "bad" input combinations to avoid. Any of the four possible assignments to \mathcal{C} and \mathcal{D} are valid.

Ulsing latches in real life

- We can connect some latches, acting as memory, to an $\mathcal{A L U}$.

- Let's say these latches contain some value that we want to increment.
- The ALUl should read the current latch value.
- It applies the " $\mathcal{G}=X+1$ " operation.
- The incremented value is stored backinto the latches.
- At this point, we have to stop the cycle, so the latch value doesn't get incremented again by accident.
- One convenient way to break the loop is to disable the latches.

The problem with latches

- The problem is exactly when to disable the latches. You have to wait long enough for the $\mathcal{A L C l}$ to produce its output, 6ut no longer.
- But different $\mathcal{A L U}$ operations have different delays. For instance, arithmetic operations might go through an adder, whereas logical operations don't.
- Changing the ALU implementation, such as using a carry-lookahead adder instead of a ripple-carry adder, also affects the delay.
- Ingeneral, it's very difficult to know how long operations take, and how long latches should be enabled for.

Making latches work right

- Our example used latches as memory for an $\mathcal{A L \mathcal { L }}$.
- Let's say there are four latches initially storing 0000.
- We want to use an ALUl to increment that value to 0001.
- Normally the latches sfiould be disabled, to prevent unwanted data from being accidentally stored.
- In our example, the $\mathcal{A L \mathcal { L }}$ can read the current latch contents, 0000 , and compute their increment, 0001 .
- But the new value cannot be stored back while the latch is disabled.

Writing to the latches

- After the ALUl has finished its increment operation, the latch can be enabled, and the updated value is stored.

- The latch must be quickly disabled again, before the ALU has a chance to read the new value 0001 and produce a new result 0010.

Two main issues

- So to use latches correctly within a circuit, we have to:
- Keep the latches disabled until new values are ready to be stored.
- Enable the latches just long enough for the update to occur.
- There are two main issues we need to address:
- How do we know exactly when the new values are ready?

We ll add another signal to our circuit. When this new signal becomes 1, the latches will know that the ALUl computation fas completed and data is ready to be stored.

- How can we enable and then quickly disable the latches?

This can be done by combining latches together in a special way, to form what are called flip-flops.

Clocks and syncfronization

- Aclock is a special device that whose output continuously alternates betwe en 0 and 1.
clockperiod

- The time it takes the clock to change from 1 to 0 and back to 1 is called the clock period, or clock cycle time.
- The clockfrequency is the inverse of the clock period. The unit of me as urement for frequency is the hertz.
- Clocks are oftenused to synchronize circuits.
- They generate a repeating, predictable pattern of $0 s$ and $1 s$ that can trigger certain events in a circuit, such as writing to a latch.
- If several circuits share a common clock signal, they can coordinate their actions with respect to one another.
- This is similar to how fumans use realclocks for synchronization.

More about clocks

- Clocks are used extensively in computer architecture.
- All processors run with an internalclock.
- Modern chips run at frequencies up to 3.2 Gभ゙z.
- This works out to a cycle time as little as 0.31 ns !

- Memory modules are often rated by their clockspeeds too-examples include "PC133" and "DDR 400 " memory.
- Be careful...higher frequencies do not always mean faster machines!
- You also have to consider how much work is actually being done during each clockcycle.
- How much stuff can really get done in just 0.31 ns ?
- Take CS 232.

Syncfronizing our example

- We can use a clock to synchronize our latches with the ALU.
- The clock signal is connected to the latch controlinput C.
- The clock controls the latches. When it becomes 1, the latches will be enable d for writing.

- The clock period must be set appropriately for the $\mathcal{A L U}$.
- It should not be too short. Otherwise, the latches will start writing before the $\mathcal{A L U}$ operation has finished.
- It should not be too long either. Otherwise, the ALU might produce a new result that will accidentally get stored, as we saw before.
- The faster the $\mathcal{A L U}$ runs, the shorter the clock period can be.

\mathcal{F} fip- flops

- The second issue was how to enable a latch for just an instant.
- Here is the internalstructure of a \mathcal{D} flip-flop.
- The flip-flop inputs are C and \mathcal{D}, and the outputs are Q and Q :
- The \mathcal{D} latch on the left is the master, while the S Rlatch on the right is called the slave.

- Note the layout here.
- The flip-flop input \mathcal{D} is connected directly to the master latch.
- The master latch output goes to the slave.
- The flip-flop outputs come directly from the slave latch.

D flip-flops when $\mathcal{C}=0$

- The \mathcal{D} flip-flop's controlinput C enables either the \mathcal{D} latch or the $\mathcal{S R}$ latch, 6ut not both.
- when $C=0$:
- The master latch is enabled, and it monitors the flip-flop input \mathcal{D}. Whenever \mathcal{D} changes, the master's output changes too.
- The slave is disabled, so the \mathcal{D} latch output has no effect on it. Thus, the slave just maintains the flip-flop's current state.

D flip-flops when $\mathcal{C}=1$

- As soon as C becomes 1,
- The master is disabled. Its output will be the last \mathcal{D} input value seen just before C became 1.
- Any subsequent changes to the \mathcal{D} input while $\mathcal{C}=1$ have no effect on the master latch, which is now disabled.
- The slave latch is enabled. Its state changes to reflect the master's output, which again is the \mathcal{D} input value from right when C became 1.

Positive edge triggering

- This is called a positive edge-triggered flip-flop.
- The flip-flop output Q changes only after the positive edge of C.
- The change is based on the flip-flop input values that were present right at the positive edge of the clocksignal.
- The \mathcal{D} flip-flop's Gehavior is similar to that of a \mathcal{D} latch except for the positive edge-triggered nature, which is not explicit in this table.

\mathcal{C}	\mathcal{D}	Q
0	χ	\mathcal{N} ochange
1	0	0 (reset)
1	1	1 (set)

Direct inputs

- One last thing to worry about...what is the starting value of Q ?
- We could set the initial value synchronously, at the next positive clock edge, but this actually makes circuit design more difficult.
- Instead, most flip-flops provide direct, or asynchronous, inputs that let you immediately set or clear the state.
- You would "reset" the circuit once, to initialize the flip-flops.
- The circuit would then begin its regular, synchronous operation.
- Here is a Logic Works \mathcal{D} flip-flop with active-low direct inputs.

Our example with flip-flops

- We can use the flip-flops'direct inputs to initialize them to 0000.

- During the clock cycle, the ALU outputs 0001, 6ut this does not affect the flip-flops yet.

Example continued

- The $\mathcal{A L U}$ output is copied into the flip-flops at the next positive edge of the clock signal.

- The flip-flops automatically "shut off," and no new data can be written until the next positive clockedge... even though the ALU produces a new output.

Flip-flop variations

- We can make different versions of flip-flops based on the \mathcal{D} flip-flop, just like we made different latches based on the S R'latch.
- $\mathcal{A} \operatorname{I} \mathcal{K}$ flip-flop has inputs that act like S and \mathcal{R}, ut the inputs $g \mathcal{K}=11$ are used to complement the flip-flop's current state.

- $\mathcal{A} \mathcal{T}$ flip-flop can only maintain or complement its current state.

C	\mathcal{T}	$Q_{\text {next }}$
0	x	$\mathcal{N} 0$ change
1	0	\mathcal{N} o change
1	1	$Q_{\text {current }}$

Characteristic tables

- The tables that we ve made so far are called characteristic tables.
- They show the ne $x t$ state $Q(t+1)$ in terms of the current state $Q(t)$

\mathcal{D}	$Q(t+1)$	Operation
0	0	Reset
1	1	Set

- For simplicity, the controlinput C is not usually listed.
- Again, these tables don't indicate the positive edge-triggered befravior of the flip-flops that we ll be using.

g	\mathcal{K}	$Q(t+1)$	Operation
0	0	$Q(t)$	$\mathcal{N o}$ change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(t)$	Complement

\mathcal{T}	$Q(t+1)$	Operation
0	$Q(t)$	Nockange
1	$Q^{\prime}(t)$	Complement

Characteristic equations

- We can also write characteristic equations, where the next state $Q(t+1)$ is defined in terms of the current state $Q(t)$ and inputs.

\mathcal{D}	$Q(t+1)$	Operation
0	0	Reset
1	1	Set

$$
Q(t+1)=\mathcal{D}
$$

g	\mathcal{K}	$Q(t+1)$	Operation
0	0	$Q(t)$	$\mathcal{N o c h a n g e}$
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(t)$	Complement

$$
Q(t+1)=\mathcal{K} Q(t)+\mathcal{I} Q^{\prime}(t)
$$

\mathcal{T}	$Q(t+1)$	Operation
0	$Q(t)$	Nochange
1	$Q^{\prime}(t)$	Complement

$$
\begin{aligned}
Q(t+1) & =\mathcal{T} Q(t)+\mathcal{T} Q^{\prime}(t) \\
& =\mathcal{T} \oplus Q(t)
\end{aligned}
$$

Flip flop timing diagrams

- "Present state" and "next state" are relative terms.
- In the example I Kflip-flop timing diagram on the left, you can see that at the first positive clockedge, $I=1, \mathcal{K}=1$ and $Q(1)=1$.
- We can use this information to find the "next" state, $Q(2)=Q(1)$ ".
- Q(2) appears right after the first positive clockedge, as shown on the right. It will not change again until after the second clockedge.

These values at clockcycle 1...

...determine the "next" Q

"Present" and "next" are relative

- Similarly, the values of \mathcal{I}, \mathcal{K} and Q at the second positive clockedge can be used to find the value of Q during the third clock cycle.
- When we do this, $Q(2)$ is nowreferred to as the "present" state, and $Q(3)$ is now the "next" state.

Positive edge triggered

- One final point to repeat: the flip-flop outputs are affected only by the input values at the positive edge.
- In the diagram below, Kchanges rapidly between the second and third positive edges.
- But it's only the input values at the third clockedge ($\mathcal{K}=1$, and $\mathcal{I}=0$ and $Q=1)$ that affect the next state, so here Q changes to 0.
- This is a fairly simple timing model. In reallife there are "setup times" and "hold times" to worry about as well, to account for internal and external delays.

Summary

- To use memory in a larger circuit, we need to:
- Keep the latches disabled until new values are ready to be stored.
- Enable the latches just long enough for the update to occur.
- Aclock signal is used to synchronize circuits. The cycle time reflects how long combinational operations take.
- Flip-flops further restrict the memory writing interval, to just the positive edge of the clocksignal.
- This ensures that memory is updated only once per clock cycle.
- There are several different kinds of flip-flops, but they all serve the same basic purpose of storing bits.
- Next week we ll talk about how to analyze and design sequential circuits that use flip-flops as memory.

